
Classifying Phases of Matter with Machine Learning

Daniel Long
School of Physics and Astronomy

University of Nottingham

12/04/2019

1

Student id: 4276240 Daniel Long

Abstract

Two different deep learning architectures are trained to classify the temperature of Ising
model spin configurations in one and two dimensions. These architectures, a multi-layer
perceptron (MLP) and a convolutional neural network (CNN), find different approaches for
inferring temperature from the configurations, and subsequently the phase of the configu-
ration. In this report it will be demonstrated that a configurations phase can be classified
without prior knowledge of order parameters, the approaches that each network arrive at
will also be analysed and understood. There will also be a comparison of the utility of
the two architectures for the problem of classifying phase. The main finding from this
report is that encoded in the weights of both networks lies the critical temperature of the
2D Ising model. It was also found that the convolutional neural network performs with
a higher classification accuracy than the multi-layer perceptron, achieving a 98.5% phase
classification accuracy compared to the 97.4% phase classification accuracy reached by
the multi-layer perceptron.

Contents

1 Introduction 3

2 Background Theory 3
2.1 The Ising Model . 3
2.2 The Two-Dimensional Ising Model . 4
2.3 Monte-Carlo Simulation of Ising Model . 5
2.4 Multi-Layer Perceptrons (MLP) . 6
2.5 Convolutional Neural Networks . 8

3 Method 9
3.1 Development of 1D Simulation . 10
3.2 Development of 2D Simulation . 12
3.3 Preparation of Multi-Layer Perceptron . 13
3.4 Preparation of Convolutional Neural Network 14

4 Results 15
4.1 Analysis of Multi-Layer Perceptron . 16
4.2 Analysis of Convolutional Neural Network . 18

5 Discussion 20

6 Summary 21

7 References 22

8 Appendix 24
8.1 1D Monte-Carlo Simulation in C . 24
8.2 2D Monte-Carlo Simulation in C . 28
8.3 Multi-Layer Perceptron code in python . 34
8.4 Convolutional Neural Network code in python 39

2

Student id: 4276240 Daniel Long

1 Introduction

The application of machine learning to scientific research is not new, however, in recent years
the ease and potential of application has massively increased. Since the 1980s multi-layer
perceptrons, a popular machine learning algorithm, have been used to detect subtle patterns
in large volumes of data from the Large Hadron Collider [1]. The subtle patterns, detected with
neural networks, were used to point researchers to fruitful avenues for investigation. However,
these computations required lots of time and resources, hence their use was not widespread.
More recently, with advances in hardware and an increase in the availability of large datasets,
scientific research has become more geared towards these forms of analysis. In many different
areas, machine learning methods have been used with considerable success; for example, in
bioinformatics machine learning methods have been used with considerable success in analysing
gene-gene interactions and detecting patterns between genomes and related phenotypes [2,3].

In the field of condensed-matter physics there has been a recent surge in the use of ma-
chine learning algorithms to analyse systems which cannot be solved analytically. One such
system is the Ising model. Various approaches have been taken, including both unsupervised
and supervised algorithms, on a range of different variants of the Ising model. A popular
unsupervised algorithm is principle component analysis (PCA). Work done by Hu et al. has
shown that PCA on 2D spin configurations yields the critical temperature, as well as eigenval-
ues corresponding to arrangements, starting from the most ordered to decreasing order [4]. Hu
et al. also applied another unsupervised algorithm, an autoencoder with a convolutional layer
as its hidden layer. This autoencoder detected phase transitions and therefore also located
the critical temperature. This approach has strong similarities to the approach undertaken in
this report. However, in this report a supervised convolutional neural network (CNN) will be
used, instead of an unsupervised autoencoder. A more similar approach was undertaken by
A. Tanaka and A. Tomiya, in their paper they used a CNN to predict the temperature of a
configuration [5]. Their paper demonstrated the effectiveness of this approach as they were
able to accurately determine the critical temperature of the 2D system.

In this report there will be an introduction to the Ising model, followed by an overview of
the Monte-Carlo approach to simulating the model. The report will then go on to cover the
principles behind MLPs and CNNs, and finally there will be an analysis of the results obtained.
The main aims of the report are to train and understand networks for detecting the phase of
a spin configuration. A more general aim of this report is to demonstrate machine learning
algorithms as a tool for analysing complex systems.

2 Background Theory

2.1 The Ising Model

The Ising model was developed by Ernst Ising in his 1925 paper, “Beitrag zur Theorie des
Ferromagnetismus” [6], which translates to, “Contribution to the theory of ferromagnetism”.
Ising’s PhD supervisor Wilhelm Lenz proposed the model as a means of explaining the onset
of ferromagnetism [7]. While at first the model was considered too simplified to be physically
relevant, it grew in popularity in the 1960s when it was shown to fit empirical results [8]. The
Ising model simulates an arrangement of atoms on a lattice by labelling each atom with a
state corresponding to the spin of the atom (either +1 or -1). The model evolves following

3

Student id: 4276240 Daniel Long

the Hamiltonian

H(σ) = −J
∑
〈i,j〉

sisj − µh
N∑
i=1

si (1)

where σ is the specific configuration, J is the interaction energy, <i, j> refers to neighbouring
atoms, si is the spin state of the ith atom, µ is the magnetic moment of the atoms on the
lattice and h is the external magnetic field strength. From equation 1 it is clear that, provided
the interaction energy is positive, the system’s energy will be minimised when neighbouring
atoms are spin aligned and when they are aligned with the external magnetic field. Atomic
arrangements sample the configuration space of possible microstates following a probability
distribution given by

P (σ) =
e

−H(σ)
kBT

Z
(2)

where H is the Hamiltonian of the configuration σ, T is the temperature of the lattice and Z
is the partition function. The partition function is given by

Z =
∑
σ

e
−H(σ)
kBT . (3)

The Ising model takes different forms according to the chosen interaction energy. When
the interaction energy is set to be positive the system is said to be ferromagnetic, when
the interaction energy is negative the system is antiferromagnetic and when the interaction
energy is zero the system is noninteracting. In this report only ferromagnetic models will be
considered. Another caveat will be that the external magnetic field will be set to zero, leading
to a Hamiltonian with only the interaction term active.

The temperature dependence of the Ising model is non-linear. Through applying the mean
field approximation to the 1D Ising model it can be shown that the expectation energy of the
1D system follows

〈E〉 = −L tanh

(
J

kBT

)
(4)

where 〈E〉 is the expectation energy and L is the length of the model. A derivation of this
result can be found in the project diary on pages 20-22 and 27. For each model there exists
a critical temperature at which entropic forces dominate over energetic forces. The location
of the critical temperature varies with respect to the dimensionality of the model. For the 1D
model the critical temperature is defined as

Tc =
zJ

kB
(5)

where z is the number of neighbouring atoms, 2 in the 1D case. A derivation of this result
can be found on pages 39-40 of the project diary.

2.2 The Two-Dimensional Ising Model

When the Ising model is extended to two dimensions the lattice becomes a torus and more
complex behaviour occurs. Unlike the 1D model, the 2D model exhibits a phase transition.

4

Student id: 4276240 Daniel Long

This development can be understood qualitatively by noting that unlike in 1D, simply flipping
the state of a single atom will not break a region of aligned spin. This difference results in
the 2D model behaving as a ferromagnet, having a non-zero magnetization at absolute zero,
unlike the 1D model, which behaves as a paramagnet.

Analytical solutions for the 2D model are much more complex than the 1D equivalent, and
rely on complex mathematical methods. In 1941 Kramers and Wannier developed the first
analytical solution to the 2D model. Their work is laid out in detail in their paper “Statistics
of the Two-Dimensional Ferromagnet. Part I” [9], the bulk of their approach lies on pages
256-259. A simple description of their approach was to construct a 2D lattice by winding a
strip of the 1D lattice. This approach relied on the principle that the state of an additional
atom to the chain depends only on the previous atom. While this approach largely failed they
were able to find some exact results, such as the critical temperature which was found from
the following equation

sinh

(
2J

kBTc

)
= 1 (6)

where Tc is found to be 2.269 if the interaction energy J and the Boltzmann constant kB are set
to one. In 1944 Lars Onsager advanced the previous work and found a full analytical solution
for the 2D model [10]. On page 138 of his paper “Crystal Statistics. I. A Two-Dimensional
Model with an Order-Disorder Transition”, he arrives the following expression for the partition
function, Z,

ln (Z)

N
= ln

(
2 cosh

(
2J

kBT

))
+

1

2π

π∫
0

ln

[
1 +

√√√√√√1−

2 sinh
(

2J
kBT

)
cos (φ)

cosh2
(

2J
kBT

)
2]

dφ (7)

where N is the number of atoms on the lattice. It is convenient to keep the partition function
in this form as it can be related to useful quantities such as the expectation energy as follows

〈E〉
N

= kBT
2 ∂

∂T

(
ln (Z)

N

)
(8)

The partition function can also be related to the variance of the expectation energy using

〈(∆E)2〉
N

= k2BT
3

[
2
∂

∂T

(
ln (Z)

N

)
+ T

∂2

∂T 2

(
ln (Z)

N

)]
(9)

Equation 7 can be solved numerically and therefore equations (8) and (9) will yield useful
results. These results will be useful when assessing the performance of the 2D classifiers and
their determination of the critical temperature. In figures 1 and 2 equations (8) and (9) are
plotted. In figure 2 a singularity occurs at the critical temperature, Tc=2.269.

2.3 Monte-Carlo Simulation of Ising Model

In order to analyse the Ising model it is useful to simulate the model using a Monte-Carlo
algorithm. In this report the popular Metropolis-Hastings algorithm is used. The algorithm
works by randomly selecting an atom in the lattice and then determining the change in the
systems energy due to flipping the selected atom. If the systems energy decreases, then the

5

Student id: 4276240 Daniel Long

Figure 1: The expectation energy of the 2D
Ising model against the temperature of the
model. Numerically calculated using equa-
tions (7) and (8).

Figure 2: The standard deviation of the
expectation energy of the 2D Ising model
against the temperature of the model.

change is permanent as the flipped state is energetically favourable. On the other hand, if the
flip causes an increase in the system energy, then the flip occurs with a probability given by

P = e
−(Hf−Hi)

kBT (10)

where Hf is the Hamiltonian of the flipped state and Hi is the Hamiltonian of the initial
state. This process is iterated over until the system reaches equilibrium. The final state of
the system will be microstate of the configuration space and each microstate occurs with their
corresponding configuration probability.

2.4 Multi-Layer Perceptrons (MLP)

Since the late 2000s there has been a rise in the application of MLPs and other similar machine
learning models. In the article, “The rise of deep learning”, there is detailed account of the
rise in prominence and an explanation for their success in solving problems which cannot be
tackled analytically [11]. The key reasons for first selecting an MLP are that: they can map
complex non-linear functions, they are well suited to generalising the problem unlike other
algorithms which can have greater bias, and as a first approach, they are flexible and relatively
easy to implement. However, as will be highlighted later in the report, MLPs are not the
optimal architecture for this problem. A schematic for a basic MLP is shown in figure 3.
The perceptron takes an input of the spin configuration, in 2D the configuration is flattened
to a 1D array. The inputted configuration is then carried into the first hidden layer through
a series of weighted connections. The neurons in the first hidden layer have an activation
corresponding to the weighted sum of the input, the weights are crucial to the process as they
provide the means for the perceptron to “learn” an optimal representation. The simplest form
of the activation of the jth neuron can be written mathematically as,

aj =
∑
i

wiai + b (11)

where ai is the activation of the ith neuron which is connected to the jth neuron in the previous
layer by the weight wi and b is the bias term.

6

Student id: 4276240 Daniel Long

Figure 3: Schematic of multi-layer perceptron used for classification

The activations of the next hidden layer are calculated in the same way, as the weighted
sum of the previous neurons. The output of the network is given by the activations of the
final layer. Each neuron in the output layer signifies a temperature, the perceptron learns to
maximise the activation of the neuron which corresponds to the temperature that the inputted
configuration corresponds to, while minimising the activation of all other output neurons. This
process is done using the loss function and the backpropagation algorithm.

The loss of the network can be defined in various ways, in this report the loss function used
was categorical cross-entropy. This loss function is mathematically defined as

Loss = −
∑
i

log (f (ai)) (12)

where the summation is performed over the neurons in the output layer, yi is the correct output
for the inputted configuration. As the desired output will always be discrete, only one class
should contain a one with the rest containing zeros, the loss function can be reduced to

Loss = − log (f (a)) (13)

where a is the activation of the neuron corresponding to the correct temperature.
Through computing the loss function, it is possible to accurately determine the quality of

the model with respect to the current weights in use. To minimise the loss of the network
the backpropagation algorithm is applied. In principle the algorithm takes derivates of the loss
function with respect to the weights and adjusts the weights in steps so as to move down
the slope of the loss function, this process is commonly known as gradient descent. Applying
gradient descent to MLPs leads to complications as each weight has a different impact on
the output depending on which layer it is in. The backpropagation algorithm propagates the
adjustments through the network, with each weight being adjusted relative to its effect on the
output. The specifics of the algorithm are too complex to go into detail in this report, on page
734 of Russell and Norvig’s textbook, “Artificial Intelligence: A Modern Approach”, there is a
pseudo-code example of the algorithm [12].

In this report two different activation functions are used, rectified linear units (ReLUs) and
softmax activations. The simpler of the two is the ReLU function, shown in graph A of figure
4. The ReLU activation outputs a linear activation if the input is positive and outputs zero if
the input is negative. ReLU’s are popular for their simplicity and effectiveness.

The softmax activation is more complex, an example activation is shown in graph B of
figure 4. In reality the activation is more complex than graph B might indicate. The activation

7

Student id: 4276240 Daniel Long

(a) ReLU activation function (b) Softmax activation function

Figure 4: Activation Functions

of the jth neuron is defined as,

Activationj =
ewjx+bj∑K
k=1 e

wkx+bk
(14)

where wjx is the weighted sum of the previous layer with the jth weights and the summation
is performed over the K neurons in the layer, in which the jth neuron also belongs. The
softmax activation creates a probability distribution with each neuron having an activation
corresponding to the probability of the neuron.

2.5 Convolutional Neural Networks

Convolutional neural networks are a specific type of deep learning architecture. Unlike percep-
trons CNNs use and train a convolutional layer to extract information from an input. In recent
years CNNs have proven to be well suited to computer vision problems. In the 2015 paper,
“Multi-view Face Detection Using Deep Convolutional Neural Networks”, CNNs were shown
to outperform the state of the art, while also being less computationally expensive [16]. Instead
of requiring separate classifiers to dissect an image, CNNs can locate the important features
of an input independently, for example they can distinguish the edge of facial features such as
eyes. This ability to detect edges will be especially relevant in this report, edges/boundaries
in a spin configuration indicate entropic forces dominating energetic forces, allowing the phase
to be inferred.

In this report the advantages of CNNs for this problem will be demonstrated through
comparing the classification accuracies of the different models. There will also be different
methods for extracting parameters of the Ising model such as the critical temperature for the
different networks.

8

Student id: 4276240 Daniel Long

Figure 5: A flow chart of the Monte-Carlo algorithm for simulating the Ising model.

3 Method

In this project some of the raw data extracted from the networks could not be fitted to theoret-
ical functions as there were no theoretical functions to fit to. Instead, an algorithm written by
Rick Chartrand was used. The algorithm is presented in the paper ”Numerical differentiation
of noisy, non-smooth data” [13]. Unlike simpler approaches of finding the difference between
neighbouring points, the algorithm uses regularization to prevent noise becoming amplified in
the numerical derivative.

Initially 1D and 2D the Monte-Carlo simulation were encoded in Matlab. While this proved
inefficient for large-scale data collection, it was useful for verifying the model and understanding
the algorithm. Once these models were encoded and understood they were translated into C
code. The algorithm in C was able to generate data far more efficiently, however it was also
more difficult to debug. A schematic of the Monte-Carlo algorithm for simulating the Ising
model is shown below in figure 5.

9

Student id: 4276240 Daniel Long

3.1 Development of 1D Simulation

Figure 6: A plot of the mean system energy of a Monte-Carlo simulated 1D Ising model against
the analytical expectation energy, with respect to temperature.

It was possible to verify the 1D model by comparing the simulation with the analytical
expectation energy given in equation 4. In figure 6 the average energy of 1000 1D Monte-
Carlo simulations for 100 temperatures are plotted against the analytical expectation energy.
From figure 6 it can be seen that the simulation is approximately accurate to the expectation
for T > 0.5. The reason for the divergence at low temperatures is due to the fact that the
number of iterations required to reach equilibrium increases exponentially as the temperature
approaches zero. At T = 0 there will be no entropic forces, hence the system should be in a
perfectly ordered state, with no boundaries. This requires the simulation to align all atoms,
this is very time consuming to simulate. In this report only configurations at T > 0.5 are
considered.

When selecting the system size there are two key criteria: the system should relatively
accurately model the behaviour of an infinitely large system and the system must be feasible
to simulate and to classify. To quantify this trade off the distribution of simulated energies is
plotted for various system sizes in figure 8. As would be expected the distribution shrinks as the
system size increases. This result is expected as larger systems can be thought of connected
smaller systems, hence will average to reduce improbable behaviour. In theory an infinitely
large system would have exactly the expectation energy.

A system size of 250 lattice points was used for the 1D simulation. This lattice size was
computationally viable, while also being sufficiently physically accurate.

10

Student id: 4276240 Daniel Long

Figure 7: Histograms of the energies of 500 simulated configurations for six lattice sizes, in
red the expectation energy of the system is plotted.

Figure 8: The standard deviation of the energy of the simulated system against the length
of the simulated configuration. The data was shown to approximately fit the function y= a√

L
where a was found to be approximately 0.73.

11

Student id: 4276240 Daniel Long

3.2 Development of 2D Simulation

When simulating the Ising model in 2D the computational work was massively increased.
Therefore, in order to generate enough data, it was important not to over iterate the simulation,
while still iterating enough to obtain physically accurate results. To find the minimum number
of iterations required the convergence of the model’s energy was recorded. In figure 9 the
evolution of the energy is plotted against the number of iterations performed, as expected
systems of lower temperatures were seen to take longer to converge.

Figure 9: A plot of the system’s energy against the number of iterations performed on the
Monte-Carlo simulation. Each energy value is averaged from 50 examples and the standard
deviation is plotted as dashed lines.

To determine the convergence of the system the energy with respect to iteration plot was
divided into overlapping windows. The standard deviation of each window was then plotted in
order, this plot is seen in figure 10.

Figure 10: The convergence of the simulation measured from the standard deviation of the
windowed system energy as it iterates.

There are two important features of figure 10. Firstly, as expected, the time taken for
the simulation to converge increases as temperature decreases, hence when simulating these
temperatures, it will be necessary to simulate for longer. Another feature is that the standard
deviations of the converged high-temperature simulations are typically greater than the con-
verged standard deviation of the low temperature simulations. This result is to be expected
from figure 2 in which the analytical result for the standard deviation of the expectation energy
of the 2D Ising model was plotted.

12

Student id: 4276240 Daniel Long

Through analysis of figure 10 it was found that a safe minimum number of Monte-Carlo
iterations was 30N , where N is the number of atoms in the 2D configuration. This number
of iterations was sufficiently large to see convergence of the lowest temperature simulations,
for the higher temperature simulations only 20N iterations were necessary.

When training networks for 30 and 100 temperature classification 5000 and 2000 examples
per temperature respectively were used.

3.3 Preparation of Multi-Layer Perceptron

When configuring the networks there were many design decisions to make and parameters
to tune. The first decision was to choose the depth of the network, there were two main
considerations that guided this choice. Firstly, the network had to be able form a sufficiently
complex structure in order to be able to classify phases from a raw spin configuration input.
This was weighed with a desire to keep the network sufficiently simple in order to be able
to understand the approach it chose for classification. A single layer was found to be too
simple for temperature classification, while increasing the number of layers beyond two led
to overfitting with minimal improvements in classification of unseen configurations, hence a
two-layer system was chosen.

The number of neurons in the hidden layer of the network was chosen with the same
considerations. A hidden layer of 80 neurons was chosen, as will be seen later the neurons in
each layer generally operate in the same manner, and hence increasing the number of neurons
in the hidden layer did not affect the network’s performance, other than to increase the training
time.

In both networks the Adam optimiser was used as it proved to converge more efficiently
than other algorithms such as RMSprop. The Adam algorithm, short for “adaptive moment
estimation”, is a variant on the traditional back propagation algorithm [14]. In order to
train optimally the algorithm varies the step size (learning rate) it takes when adjusting the
parameters. For traditional algorithms the learning rate is fixed and therefore will not perform
optimally throughout the descent.

The choice of activation functions to use in the perceptron was relatively simple. For
the output layer it made sense to use a softmax activation, otherwise known as normalised
exponential function. This activation behaves much like a probability distribution with the
output being normalised. Unlike classification problems in which classes do not overlap, such
as a cat or dog classification, the spin configurations inside temperature classes overlapped.
Therefore, it makes sense to output the probability of a configuration belonging to a specific
class. For the intermediate layer a rectified linear unit (ReLU) was used. This activation
function has been shown to yield equal or better performance than a hyperbolic tangent
activation, while also requiring less computational work to differentiate, which will speed up
the training process [15].

To prevent the perceptron from overfitting the training dataset the weights were regularised
using L2 regularisation, otherwise known as “ridge regularisation”. L2 regularisation works by
adding the square of each weight’s value to the loss, where the squared weight is weighted by
a pre-defined coefficient. If the coefficient is large then the network will be heavily penalised
for large weights, forcing it to use more of the network in classification, rather than becoming
dependent on a few weights. This penalisation typically encourages the network to find a more
generalised representation, often reducing potential overfitting of the seen data. However, too
much regularisation can prevent the network from finding the optimal solution. For the MLP
only weights connecting to the hidden layer were regularised with a coefficient of 0.03 as these

13

Student id: 4276240 Daniel Long

were the only weights prone to overfitting. To determine for overfitting the evolution of the
loss function on seen and unseen data was analysed. There are three main scenarios with
regard to the regularisation, these scenarios are shown in figure 11.

(a) Overfitting with λ = 0.003 (b) Over-regularisation with λ = 0.3

(c) Optimal regularisation, with λ = 0.03

Figure 11: Training graphs for different regularisation parameters

The first scenario, seen in graph A of figure 11, is overfitting. Overfitting can be recognised
from the fact that the unseen dataset’s loss increases after initially falling with the seen dataset
loss. The unseen data’s loss increases as the network has learnt a classification approach which
uses patterns in the seen dataset which are specific to the seen dataset, rather than the Ising
model. Graph C of figure 11 is an example of over-regularisation. The accuracy of both
models prematurely plateaus, this is because the optimal solution is unfavourable due to the
loss associated to the weights. Graph B of figure 11 shows optimal regularisation. Both losses
plateau without diverging or plateauing prematurely, indicating that an optimal solution has
been found. To find an optimal regularisation coefficient a trial and error approach was used,
more rigorous approaches exist but for this problem a near optimal solution was sufficient.

3.4 Preparation of Convolutional Neural Network

The convolutional network was found to perform sufficiently well with only one convolutional
layer and one fully connected layer. This structure allowed for the network to represent the

14

Student id: 4276240 Daniel Long

classification problem, as well as be understood. This meant that the convolutional network
had two layers to tune, the convolutional layer and the output layer.

The convolutional layer had five parameters to choose: the size of the filter, the number
of filters, the regularisation of the filter coefficients, step size in the convolution and the
activation function of the convolutional weights. For this problem it made sense to use a
2x2 filter, this filter size could achieve high classification accuracies while remaining easily
explainable. Different filter sizes such as a 3x3 filter were experimented with, however they did
not show noticeable improvements in classification accuracy. The lack of increased accuracy
with larger filter sizes will become clear later when the convolutional network’s classification
approach is analysed.

As with the increasing filter size, increasing the number of filters did not show improvements
in classification accuracy. Hence, only one filter was used making the network both more
explainable and faster to train.

The regularisation of the filter coefficients was set to zero. Unlike a fully connected layer
the filter did not overfit the data. This was because the filter was kept small and hence could
not encode any complexities of the seen dataset.

The step size used in the network was kept at one. This step size proved to work better than
larger strides and therefore was kept simple. The activation function was chosen in a similar
manner, a simple ReLU activation proved sufficient for achieving high accuracies and led to
faster training. The final layer of the convolutional network was a fully connected layer, from
a flattened convolution of the input to a set of output neurons, corresponding to temperature
classifications. This layer used softmax activations for the same reasons as were cited in the
MLP.

4 Results

The networks underwent supervised training to classify spin configurations to their corre-
sponding temperature. At first the networks were trained to classify two and four different
temperatures. The temperatures were distributed around the critical temperature with the
four temperature at 0.5 Tc, Tc, 1.5 Tc and 2 Tc and the two temperatures at 0.5 Tc and 1.5
Tc. Through these initial networks it was possible to tune the hyper-parameters, such as regu-
larization, for this classification problem. The networks were trained on 30,000 configurations
per temperature, their respective test set accuracies are seen in table 1.

Model
1D 2D

Two temperature
classification

Four temperature
classification

Two temperature
classification

Four temperature
classification

MLP 99.9 % 80.4 % 87.5 % 84.7 %

CNN 100 % 91.3 % 99.9 % 95.4 %

Table 1: Classification accuracy for different architectures, dimensionality and number of target
temperatures.

In table 1 it can be seen that the CNN consistently outperforms the MLP. This is no
surprise as the convolutional network is much better suited to this classification problem. These
accuracies demonstrate that the networks are capable of exploiting the underlying temperature
dependence of the spin configurations in a sufficiently general manner, such that they can

15

Student id: 4276240 Daniel Long

accurately classify unseen configurations. The next step is to analyse how the networks have
learnt to estimate the temperature. Only the 2D classifiers will be analysed, the 1D classifiers
used the same approaches in simpler forms.

4.1 Analysis of Multi-Layer Perceptron

The initial layer of the perceptron can be understood as a complex filter, designed to detect
fluctuations in spin states. In figure 12 the weight values connecting to the hidden layer are
shown.

Figure 12: Value of weights connecting to
neurons in the hidden layer.

Figure 13: Value of weights connecting
to final layer. The output neurons corre-
spond to temperature classification for a 30-
temperature classification problem. The neu-
rons correspond to temperatures evenly dis-
tributed between 0.25 Tc and 3 Tc, with the
0th neuron corresponding to 0.25 Tc.

In figure 13 there are horizontal strips of weights, such as the strip corresponding to the 0th

hidden layer neuron, which appear to decrease in weight value as the output neuron number
increases. These strips correspond to hidden layer neurons connected to the vertical strips
seen in figure 12. In figure 14 the average of the weights in these horizontal strips is plotted
against the temperature corresponding to the output neuron.

Another crucial part of the network is the biases in the second layer. The bias for each
output neuron is plotted in figure 15.

The structure of the MLP, as seen in figures 12-15, can be understood by noting that the
magnitude of the output of the boundary detecting strips in the first layer will be greatest
for low temperature configurations. This is because the weights are less likely to cancel out
due to encountering boundaries, unlike for a high temperature configuration, in which many
boundaries are present. When the hidden layer neurons have a large activation then the
output neurons corresponding to low temperature classes will be greatest in activation. This
is because the large hidden layer activations will be multiplied by positive coefficients for the
low temperature neurons, as seen in figure 14, whereas the high temperature neurons are the
product of large negative coefficients and the hidden layer activations. The biases seen in
figure 15 have little effect when the product of the hidden layer activations and the output
layer weights is large, meaning that the low temperature products will still be much larger
than the high temperature products, despite bias. However, the biases dominate when the

16

Student id: 4276240 Daniel Long

Figure 14: The mean of the weights connected to the output layer against the output neurons
corresponding temperature.

Figure 15: The bias value for each output neuron, plotted against the temperature correspond-
ing to the output neuron.

product is small, in the case of a high temperature input, leading to the high temperature
output neurons to dominate.

It is interesting to note that the biases have a local maximum at the neuron corresponding
to a temperature of 2.07. This indicates that the MLP roughly locates the temperature region
of phase transition.

During training the network’s accuracy is determined to be the percentage of exactly
correct classifications. However, as mentioned previously, the Monte-Carlo simulation of the
Ising model samples the possible configurations from broad distributions, as seen in figure 2.
This means that simulated models with similar temperatures will be hard to distinguish from
just one instance of the configuration. The final softmax layer of the network effectively outputs
the probability of the model belonging to a specific temperature. Therefore, a more realistic
measure of classification accuracy of determining correct classifications was to measure the
percentage of outputs which were within ±2 classes of the correct temperature classification.
For the MLP this accuracy was found to be 65.1%.

The temperature prediction can be converted to a prediction of the model being in an
ordered or disordered phase. To convert the prediction the outputted probability distribution
is divided around the critical temperature, the output of the network in neurons corresponding
to greater than the critical temperature is defined as the probability of the system being in

17

Student id: 4276240 Daniel Long

a disordered phase, and vice-versa. This output can be analysed in two manners, firstly the
accuracy of this classification can be found and secondly the correlation in the confidence of
the classification and the actual closeness to the critical temperature can be analysed. When
the accuracy is defined as correct classification of phase then the test set accuracy is 97.4%.
The high phase classification accuracy demonstrates that the two-layer perceptron can create
a representation for solving the classification problem, without any prior knowledge of where
the critical temperature occurs.

4.2 Analysis of Convolutional Neural Network

As seen in table 1 the convolutional network performed with a much higher accuracy than the
MLP, therefore using this network it should be possible to more accurately find the critical
temperature of the 2D Ising model. One approach to finding the critical temperature is
to use the trained convolution parameters and find the greatest change in the convolved
output of the configurations. The convolutional parameters that the network trains, seen in
table 2, are designed to detect boundaries in the configuration. The presence of boundaries
indicates entropic forces and therefore the phase of the system. The greatest change in
this indicator of phase will occur at the phase boundary, this result is seen experimentally
in figure 16, which shows the output of the convolutional layer after it has been trained to
classify spin configurations into 100 different temperature categories. The reason for using 100
temperatures was to increase the accuracy in locating the temperature at which the gradient
is maximum.

Figure 16: A plot of the mean convolved output of test set spin configurations against the
temperature of the configuration. The gradient of the output is greatest at T=2.2675±0.0869,
which is 0.02 standard deviations from the analytical critical temperature of the 2D Ising model,
Tc=2.269.

The success of the CNN can be best understood by comparing figure 16 to figure 1, a
plot of the expectation energy of the 2D Ising model against the model’s temperature. The
similarities in these plots led directly to a new approach for extracting the critical temperature
of the 2D Ising model from the location of the maximum gradient in the mean convolution
output, with respect to temperature. Ideally to find the maximum gradient of figure 16 it
would be possible to fit a theoretically motivated function to the data; this is not possible in
this case as there is no known equation to fit. Instead an algorithm written by Rick Chartrand
was used to differentiate the raw data[13]. Using this approach, the maximum gradient in
the mean convolution output was found to occur at T=2.2675±0.0869. The error in the

18

Student id: 4276240 Daniel Long

-0.787810 0.798473
0.789885 -0.799807

Table 2: Convolutional parameters of the trained CNN

maximum gradient location was determined by applying the algorithm 1000 times to the data
with noise added to each data point and finding the standard deviation of the temperatures
found in each iteration. The noise was randomly sampled from a gaussian distribution with a
standard deviation equal to the standard deviation of each data point. The analytical critical
temperature, Tc=2.269, lies within 0.02 standard deviations of the experimentally determined
point. This is strong evidence of the CNN independently learning features of the 2D Ising
model.

Figure 17: The weights of the final layer, connecting the convolution to the output neurons.
The neurons are linearly distributed in temperature, with the 0th neuron corresponds to 0.25
Tc and the 99th neuron corresponds to 3 Tc.

A second aspect of the CNN to analyse is the distribution of the weights in the final layer.
In figure 17 the weights in the final layer are shown, the mean of these weights is plotted
against the temperatures they correspond to in figure 18.

Figure 18: The mean weight value connecting to each output neuron, plotted against the
temperature corresponding to the output neuron.

There is a clear trend in the weight values with respect to temperature, with different

19

Student id: 4276240 Daniel Long

behaviour before and after the critical temperature. However, as for the MLP, the final layer
weights in the CNN do not show the full picture of the classification.

To fully understand the logic of the CNN approach the bias terms have to be appreciated.
The bias terms in the final layer of the CNN are plotted in figure 19.

Figure 19: The output neuron bias value for the CNN.

The bias terms, seen in figure 19, follow an approximately linear trend with respect to tem-
perature. This behaviour can be understood by following the logic of the network’s approach.
When the network is given a spin configuration formed at a low temperature, the convolution
will output an array with a relatively small average value. The convolution outputs this array
because the filter will not encounter as many boundaries. When this convolved input is passed
to the final layer the product of the negative weights of neurons, corresponding to low temper-
atures, and the convolved input will not be very large. Therefore, the bias term will dominate
and lead to large activations in the low temperature output neurons. On the other hand, the
high temperature output neurons will not have large activations as their coefficients are much
smaller in magnitude than the low temperature neurons, as seen in figure 18. As the bias terms
for the high temperature neurons are very negative, the activations of the high temperature
neurons will be much less than the low temperature neurons, leading to a correct classification.
For high temperature spin configurations, the approach also holds. The weighted convolved
output cancels with the bias terms for the low temperature output neurons and does not cancel
for the high temperature output neurons as the bias term for these neurons is relatively small
compared to the weighted sum of the convolution.

As for the MLP the percentage of CNN outputs within±2 classes of the correct temperature
classification were determined. For the CNN this accuracy was found to be 74.1%, higher than
the MLP’s 65.1%.

To compare the accuracy of the CNN with the MLP the phase classification accuracy of
the CNN has been calculated. This accuracy was once again computed through determining
the binary phase classification of the network, which was trained to predict the temperature on
the same 30 temperature dataset. The CNN achieved a 98.5% phase classification accuracy
on the unseen test dataset.

5 Discussion

The 98.5% and 97.4% phase classification accuracies achieved by the CNN and MLP respec-
tively demonstrate that both deep learning architectures are capable of accurately detecting the

20

Student id: 4276240 Daniel Long

phase of spin configurations. The networks both proved to be able to predict the temperature
of an unseen spin configuration. However, as would be expected this accuracy was limited by
the inherent overlapping of configurations between temperature classes. The networks were
found to be able to accurately localise the temperatures to ±2 temperature classes of the max
output, with 74.1% for the CNN and 65.1% for the MLP. Analysis of the networks also shows
that the networks use similar approaches to predict the temperature of a configuration.

The MLP uses the first layer to detect the degree of disorder in the input. The degree of
disorder is then fed forward to the second layer where it is used to estimate temperature. The
MLP approach is much cruder than the CNN as the first layer does not perform as well as a
convolutional filter. Unlike the perceptron the CNN can model the energy of the system with
a high degree of accuracy from the first layer. This results in the second layer of the system
being more precise in classification.

An interesting extension to this work would be to apply the methods to the 3D Ising model.
The 3D Ising model has so far not been analytically solved, although recent advances have
been made using a conformal bootstrap approach [18]. The critical point of the 3D Ising model
is thought to belong to the same universality class as liquid-vapour transitions as well as other
physical systems [19]. Therefore, applying the approaches used in this report could yield new
results which can be compared to real systems.

6 Summary

Both networks proved capable of learning approaches to classify spin configurations according
to the temperature they were formed at. It was then shown that the temperature classification
could be extended to allow the networks to classify the phase of a spin configuration. When
the overlap between temperature classes was small the networks achieved much lower accura-
cies, as would be expected. However, increasing the density of temperature classes allowed the
approaches taken by the networks to be analysed. It was found that both networks effectively
measured the number of boundaries in the configurations and used this frequency to predict
the temperature. The CNN was better suited to this approach, leading to its greater perfor-
mance. From the graph of the average final layer weight of the CNN per output neuron, the
critical temperature of the 2D Ising model was found to be 2.2675±0.0869. This result was
approximately 0.02 standard deviations away from the analytical result.

21

Student id: 4276240 Daniel Long

7 References

References

[1] A. Cho, AI in Action: AI’s early proving ground: the hunt for new particles, Science,
2017, Vol. 357, Issue 6346, pp. 20, DOI: 10.1126/science.357.6346.20

[2] Koo CL, Liew MJ, Mohamad MS, Salleh AH. A review for detecting gene-gene interac-
tions using machine learning methods in genetic epidemiology. Biomed. Res. Int. 2013;
2013:432375. doi: 10.1155/2013/432375.

[3] Upstill-Goddard R, Eccles D, Fliege J, Collins A. Machine learning approaches for the
discovery of gene-gene interactions in disease data. Brief. Bioinform. 2013; 14:251–260.
doi: 10.1093/bib/bbs024.

[4] W. Hu, R. R. P. Singh, R. T. Scalettar, Discovering phases, phase transitions, and
crossovers through unsupervised machine learning: A critical examination, PHYSICAL
REVIEW E 95, 062122 (2017), DOI: 10.1103/PhysRevE.95.062122

[5] Tanaka, A. and Tomiya, A. Detection of phase transition via convolutional neural net-
work. J. Phys. Soc. Jpn. 86, 063001 (2017)

[6] Ising, E. (1925), ”Beitrag zur Theorie des Ferromagnetismus”, Z. Phys., 31 (1):
253–258, Bibcode:1925ZPhy...31..253I, doi:10.1007/BF02980577

[7] Ising, T, Folk, R, Kenna, R, Berche, B and Holovatch, Y 2017, ’The Fate of Ernst Ising
and the Fate of his Model’ Journal of Physical Studies, vol 21, no.3, 3002.

[8] M. Niss, History of the Lenz–Ising Model 1950–1965: from irrelevance to relevance,
Arch. Hist. Exact Sci. (2009) 63:243–287 DOI 10.1007 s00407-008-0039-5

[9] H. A. Kramers and G. H. Nannier, “Statistics of the Two-Dimensional Ferromagnet.
Part I”, Phys. Rev. 60, pgs. 252-262 (1941)

[10] L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder
Transition, Phys. Rev. 65 (1944) 117–149.

[11] S.Gleyzer, The rise of deep learning, Cern Courier, (2018)

[12] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. New Jersey,
Pearson 2010

[13] Rick Chartrand, ”Numerical differentiation of noisy, nonsmooth data”, ISRN Applied
Mathematics, Vol. 2011, Article ID 164564, 2011

[14] D. Kingma and J. Ba. Adam: a method for stochastic optimization. Arxiv, 1412.6980,
2014.

[15] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks. In Proceedings
of the Fourteenth International Conference on Arificial Intelligence and Statistics, Fort
Lauderdale, FL, USA, 11–13 April 2011, pp. 315–323.

22

Student id: 4276240 Daniel Long

[16] S. S. Farfade, M. J. Saberian, and L. J. Li, “Multi-view face detection using deep
convolutional neural networks”, in ACM Int. Conf. Multimedia Retrieval, 2015, pp. 643-
650.

[17] K. Kashiwa, Y. Kikuchi, and A. Tomiya, “Phase transition encoded in neural network”,
arXiv:1812.01522.

[18] Kos, Filip, David Poland, and David Simmons-Duffin, 2014a, “Bootstrapping Mixed
Correlators in the 3D Ising Model”, J. High Energy Phys. 11, 109.

[19] D. Poland, D.S. Duffin, “The conformal Bootstrap”, Nature Physics Volume 12, pages
535–539 (2016)

23

Student id: 4276240 Daniel Long

8 Appendix

8.1 1D Monte-Carlo Simulation in C

#inc lude <s t d i o . h>
#inc lude < s t d l i b . h>
#inc lude <math . h>
#inc lude <t ime . h>

// C o n f i g u r e b a s i c p a r a m e t e r s o f s i m u l a t i o n
//L = l e n g t h o f c h a i n
#def ine L 250
//numtemps = number o f t e m p e r a t u r e s s i m u l a t e d
#def ine numtemps 2
//m = number o f examples p e r t e m p e r a t u r e
#def ine m 30000
// J = i n t e r a c t i o n e n e r g y
#def ine J 1
// Set boltzmann c o n s t a n t to one
#def ine kB 1
// Set e x t e r n a l magent ic f i e l d to z e r o
#def ine H 0

// This f u n c t i o n c a l c u l a t e s th e e n e r g y o f th e system by
d e t e r m i n i n g t he e n e r g y a s s o c i a t e d w i t h each n e i g h b o u r
i n t e r a t i o n

// I t r e c e i v e s t he c o n f i g u r a t i o n as an i n p u t and o u t p u t s t he
e n e r g y o f t he c o n f i g u r a t i o n

i n t c a l c u l a t e E 1 D (i n t Atoms [L])
{

// C r e a t e a r r a y s f o r s h i f t i n g one to t he l e f t
// Only l e f t n e i g h b o u r s i s counted to p r v e n t d o u b l e c o u n t i n g

o f n e i g h b o u r i n g i n t e r a c t i o n s
i n t AtomsR [L] ;
i n t j ;
f o r (j = 0 ; j < (L−1) ; j ++){

AtomsR [j] = Atoms [j +1] ;
}
AtomsR [L−1] = Atoms [0] ;
// Sum t he e n e r g y o f each i n t e r a c t i o n
i n t E = 0 ;
f o r (j = 0 ; j < L ; j ++){

E = −J*Atoms [j]*AtomsR [j] + E ;
}
// a l i g n d e t e r m i n e s th e sum o f th e a l i g n m e n t s , i e sum o f

s p i n s
i n t a l i g n = 0 ;

24

Student id: 4276240 Daniel Long

f o r (j = 0 ; j < L ; j ++){
a l i g n = Atoms [j] + a l i g n ;

}
// Add e x t e r n a l magnet ic f i e l d e n e r g y term
E = E − H* a l i g n ;
return E ;

}

// This f u n c t i o n d e t e r m i n e s t he change i n th e system e n e r g y due
to f l i p p i n g t he e l em en t d e f i n e d by co−o r d i n a t e i

i n t c a l c u l a t e E 1 D c h a n g e (i n t Atoms [L] , i n t i)
{

i n t Ei , Ef , d e l t a E ;
// C a l c u l a t e i n i t i a l e n e r g y o f system , E i
E i = −J*Atoms [i]* Atoms [(i +1)%L] + −J*Atoms [i]* Atoms [(i −1)%L

] ;
// C a l c u l a t e f i n a l e n e r g y o f system , Ef
Ef = J*Atoms [i]* Atoms [(i +1)%L] + J*Atoms [i]* Atoms [(i −1)%L] ;
// Find change i n e n e r g y
d e l t a E = Ef − E i ;
return d e l t a E ;

}

// Determine m a g n e t i s a t i o n o f c o n f i g u r a t i o n
i n t ca lcu lateM1D (i n t Atoms [])
{

i n t i ;
i n t M = 0 ;
// Sum s p i n s i n c o n f i g u r a t i o n
f o r (i = 0 ; i < L ; i ++){

M += Atoms [i] ;
}
return M;

}

i n t main ()
{

// I n i t i a l i s e random s e e d from timestamp
t i m e t t ;
s r a n d ((unsigned) t ime (& t)) ;

// C r e a t e randomised s p i n c o n f i g u r a t i o n and t e m p e r o r a r y
a r r a y f o r s t o r i n g s p i n s

i n t i ;
i n t Atoms [L] ;
f o r (i = 0 ; i < L ; i ++){

Atoms [i] = 2*(rand () %2)−1;

25

Student id: 4276240 Daniel Long

}
// C o n f i g u r e a r r a y f o r s t o r i n g t e m p e r a t u r e s
i n t T0 = J/kB ;
i n t d e l t a E ;
f l o a t Tl = 0 . 5 ;
f l o a t Th = 1 . 5 ;
f l o a t c o e f s [numtemps] ;
f o r (i = 0 ; i < numtemps ; i ++){

c o e f s [i] = (Th−Tl) * ((f l o a t) (i) /(f l o a t) (numtemps−1)) + (
f l o a t) (Tl) ;

}
// C r e a t e a r r a y s f o r s t o r i n g s i m u l a t e d data
i n t **Data ;
Data = (i n t **) m a l l o c (numtemps*m* s i z eo f (i n t *)) ;
f o r (i =0; i <(numtemps*m) ; i ++){

Data [i] = (i n t *) m a l l o c (L* s i z eo f (i n t)) ;
}
// I n i t i a l i s e t e m p e r a t u r e v a r i a b l e
f l o a t T ;
// Magnet ic f i e l d measurememt d i s a b l e d f o r speed
i n t M = 0 ;
f l o a t ** yData ;
yData = (f l o a t **) m a l l o c (numtemps*m* s i z eo f (f l o a t *)) ;
f o r (i =0; i <(numtemps*m) ; i ++){

yData [i] = (f l o a t *) m a l l o c (3* s i z eo f (f l o a t)) ;
}
i n t temp , i t e r , numiter , j , mi , E , E f i n a l ;
// C o n f i g u r e p l o t t i n g data a r r a y
f l o a t ** p l o t D a t a ;
p l o t D a t a = (f l o a t **) m a l l o c (numtemps*m* s i z eo f (f l o a t *)) ;
f o r (i =0; i <(numtemps*m) ; i ++){

p l o t D a t a [i] = (f l o a t *) m a l l o c (4* s i z eo f (f l o a t)) ;
}
// Run Monte−C a r l o S i m u l a t i o n
// Loop o v e r examples
f o r (mi = 0 ; mi < m; mi++){

// Loop o v e r t e m p e r a t u r e s
f o r (temp = 0 ; temp < numtemps ; temp++){

// Set t e m p e r a t u r e p e r l o o p
T = c o e f s [temp]*T0 ;
// Set number o f i t e r a t a t i o n s p e r l o o p
n u m i t e r = 1 0 0 ;
// Re−randomise atomic a r r a y
f o r (i = 0 ; i < L ; i ++){

Atoms [i] = 2*(rand () %2)−1;
}
// I t e r a t e s i m u l a t i o n by s e l e c t i n g random h o r i z o n t a l

26

Student id: 4276240 Daniel Long

and v e r t i c a l co−o r d i n a t e and d e t e r m i n i n g s t a t e
through MC a l g o r i t h m

f o r (i t e r = 0 ; i t e r < n u m i t e r ; i t e r ++){
f o r (i = 0 ; i < L ; i ++){

i = rand ()%L ;
d e l t a E = c a l c u l a t e E 1 D c h a n g e (Atoms , i) ;
// I f e n e r g y o f new s t a t e i s l e s s than

p r e v i o u s s t a t e then m a i n t a i n f l i p
i f (d e l t a E <= 0) {

Atoms [i] = −1*Atoms [i] ;
}
// I f e n e r g y o f new s t a t e i s g r e a t e r than

p r e v i o u s s t a t e then f l i p s p e c i f i c
p r o b a b i l i t y

e l s e {
i f (exp (−(double) d e l t a E / ((double) (kB*T)))

> (double) rand () /(double)RAND MAX) {
Atoms [i] = −1*Atoms [i] ;

}
}

}
}
// M a g n e t i s a t i o n can be r e c o r d e d but has been

removed f o r speed .
//M = calcu lateM1D (Atoms) ;
// Determine f i n a l e n e r g y o f system
E f i n a l = c a l c u l a t e E 1 D (Atoms) ;
// S t o r e f i n a l s p i n c o n f i g r a t i o n
f o r (j = 0 ; j < L ; j ++){

Data [temp*m + mi] [j] = Atoms [j] ;
}
// S t o r e f i n a l energy , t e m p e r a t u r e and m a g n e t i s a t i o n

o f f i n a l c o n f i g u r a t i o n
yData [temp*m + mi] [0] = (f l o a t) (E f i n a l) /L ;
yData [temp*m + mi] [1] = T ;
yData [temp*m + mi] [2] = (f l o a t)M;
// S t o r e p l o t t i n g data , te mp er at ure , energy ,

e x p e c t a t i o n e n e r g y and number o f i t e r a t i o n s o f
th e f i n a l c o n f i g u r a t i o n

p l o t D a t a [temp*m + mi] [0] = T ;
p l o t D a t a [temp*m + mi] [1] = (f l o a t) (E f i n a l) /L ;
p l o t D a t a [temp*m + mi] [2] = −tanh ((double) (J) /(double

) (kB*T)) ;
p l o t D a t a [temp*m + mi] [3] = (f l o a t) n u m i t e r ;

}
}
// Save data i n t o . c s v f i l e s

27

Student id: 4276240 Daniel Long

FILE * f 1 = fop en (”CspinData1DM2T 0 . 4 . c s v ” , ”w”) ;
f o r (j = 0 ; j < numtemps*m; j ++){

f o r (i = 0 ; i < L ; i ++){
f p r i n t f (f1 , ”%i , ” , Data [j] [i]) ;

}
f p r i n t f (f1 , ” \n”) ;

}
f c l o s e (f 1) ;

FILE * f 2 = fop en (”CspinYData1DM2T 0 . 4 . c s v ” , ”w”) ;
f o r (j = 0 ; j < numtemps*m; j ++){

f o r (i = 0 ; i < 3 ; i ++){
f p r i n t f (f2 , ”%f , ” , yData [j] [i]) ;

}
f p r i n t f (f2 , ”\n”) ;

}
f c l o s e (f 2) ;
/*
FILE * f 3 = fop en (” CplotData1D 20T . c s v ” , ”w”) ;
f o r (j = 0 ; j < numtemps*m; j ++){

f o r (i = 0 ; i < 4 ; i ++){
f p r i n t f (f3 , ”%f , ” , p l o t D a t a [j] [i]) ;

}
f p r i n t f (f3 , ”\ n ”) ;

}
f c l o s e (f 3) ;
*/
return 0 ;

}

8.2 2D Monte-Carlo Simulation in C

#inc lude <s t d i o . h>
#inc lude < s t d l i b . h>
#inc lude <math . h>
#inc lude <t ime . h>

// C o n f i g u r e b a s i c p a r a m e t e r s o f s i m u l a t i o n
//L = s i d e l e n g t h
#def ine L 30
//numtemps = number o f t e m p e r a t u r e s s i m u l a t e d
#def ine numtemps 100
//m = number o f examples p e r t e m p e r a t u r e
#def ine m 2000
// J = i n t e r a c t i o n e n e r g y
#def ine J 1
// Set boltzmann c o n s t a n t to one
#def ine kB 1

28

Student id: 4276240 Daniel Long

// Set e x t e r n a l magent ic f i e l d to z e r o
#def ine H 0

// This f u n c t i o n c a l c u l a t e s th e e n e r g y o f th e system by
d e t e r m i n i n g t he e n e r g y a s s o c i a t e d w i t h each n e i g h b o u r
i n t e r a t i o n

// I t r e c e i v e s t he c o n f i g u r a t i o n as an i n p u t and o u t p u t s t he
e n e r g y o f t he c o n f i g u r a t i o n

i n t c a l c u l a t e E 2 D (i n t Atoms [L] [L])
{

// C r e a t e a r r a y s f o r s h i f t i n g one to t he r i g h t and up one
// Only up and r i g h t n e i g h b o u r s a r e counted to p r v e n t d o u b l e

c o u n t i n g o f n e i g h b o u r i n g i n t e r a c t i o n s
i n t AtomsR [L] [L] ;
i n t AtomsU [L] [L] ;
i n t i , j ;
f o r (i = 0 ; i < L ; i ++){

f o r (j = 0 ; j < (L−1) ; j ++){
AtomsR [i] [j] = Atoms [i] [j +1] ;

}
AtomsR [i] [L−1] = Atoms [i] [0] ;

}
f o r (j = 0 ; j < L ; j ++){

f o r (i = 0 ; i < (L−1) ; i ++){
AtomsU [i] [j] = Atoms [i +1] [j] ;

}
AtomsU [L−1] [j] = Atoms [0] [j] ;

}
// a l i g n d e t e r m i n e s th e sum o f th e a l i g n m e n t s , i e sum o f

s p i n s
i n t a l i g n = 0 ;
f o r (i = 0 ; i < L ; i ++){

f o r (j = 0 ; j < L ; j ++){
a l i g n = Atoms [i] [j] + a l i g n ;

}
}
// Sum t he e n e r g y o f each i n t e r a c t i o n
i n t E = 0 ;
f o r (i = 0 ; i < L ; i ++){

f o r (j = 0 ; j < L ; j ++){
E = −J*Atoms [i] [j]*AtomsR [i] [j] + E ;
E = −J*Atoms [i] [j]*AtomsU [i] [j] + E ;

}
}
// Add e x t e r n a l magnet ic f i e l d e n e r g y term
E = E − H* a l i g n ;
return E ;

29

Student id: 4276240 Daniel Long

}

// This f u n c t i o n d e t e r m i n e s t he change i n th e system e n e r g y due
to f l i p p i n g t he e l em en t d e f i n e d by co−o r d i n a t e s i , j

i n t c a l c u l a t e E 2 D c h a n g e (i n t Atoms [L] [L] , i n t i , i n t j)
{

i n t Ei , Ef , d e l t a E ;
// C a l c u l a t e i n i t i a l e n e r g y o f system , E i
E i = −J*Atoms [i] [j]* Atoms [(i +1)%L] [j] + −J*Atoms [i] [j]* Atoms

[(i −1)%L] [j]
+ −J*Atoms [i] [j]* Atoms [i] [(j +1)%L] + −J*Atoms [i] [j]* Atoms [i

] [(j −1)%L] ;
// C a l c u l a t e f i n a l e n e r g y o f system , Ef
Ef = J*Atoms [i] [j]* Atoms [(i +1)%L] [j] + J*Atoms [i] [j]* Atoms [(

i −1)%L] [j]
+ J*Atoms [i] [j]* Atoms [i] [(j +1)%L] + J*Atoms [i] [j]* Atoms [i] [(

j −1)%L] ;
// Find change i n e n e r g y
d e l t a E = Ef − E i ;
return d e l t a E ;

}

// Determine m a g n e t i s a t i o n o f c o n f i g u r a t i o n
i n t ca lcu lateM2D (i n t Atoms [L] [L])
{

i n t i , j ;
i n t M = 0 ;
// Sum s p i n s i n c o n f i g u r a t i o n
f o r (i = 0 ; i < L ; i ++){

f o r (j = 0 ; j < L ; j ++){
M += Atoms [i] [j] ;

}
}
return M;

}

i n t main ()
{

// I n i t i a l i s e random s e e d from timestamp
t i m e t t ;
s r a n d ((unsigned) t ime (& t)) ;

// C r e a t e randomised s p i n c o n f i g u r a t i o n and t e m p e r o r a r y
a r r a y f o r s t o r i n g s p i n s

i n t i , j , k , i i , j j ;
i n t Atoms [L] [L] ;
i n t Atomst [L] [L] ;

30

Student id: 4276240 Daniel Long

f o r (i = 0 ; i < L ; i ++){
f o r (j = 0 ; j < L ; j ++){

Atoms [i] [j] = 2*(rand () %2)−1;
Atomst [i] [j] = Atoms [i] [j] ;

}
}
// C o n f i g u r e a r r a y f o r s t o r i n g t e m p e r a t u r e s
f l o a t T0 ;
T0 = 2/ l o g (1 + s q r t (2)) ;
i n t d e l t a E ;
f l o a t Tl = 0 . 2 5 ;
f l o a t Th = 3 ;
f l o a t c o e f s [numtemps] ;
f o r (i = 0 ; i < numtemps ; i ++){

c o e f s [i] = (Th−Tl) * ((f l o a t) (i) /(f l o a t) (numtemps−1)) + (
f l o a t) (Tl) ;

}
// C r e a t e a r r a y s f o r s t o r i n g s i m u l a t e d data
i n t **Data ;
Data = (i n t **) m a l l o c (numtemps*m* s i z eo f (i n t *)) ;
f o r (i =0; i <(numtemps*m) ; i ++)

Data [i] = (i n t *) m a l l o c (L*L* s i z eo f (i n t)) ;
f l o a t E f i n a l ;
f l o a t ** yData ;
yData = (f l o a t **) m a l l o c (numtemps*m* s i z eo f (f l o a t *)) ;
f o r (i = 0 ; i <(numtemps*m) ; i ++)

yData [i] = (f l o a t *) m a l l o c (3* s i z eo f (f l o a t)) ;
// I n i t i a l i s e u s e f u l v a r i a b l e s
i n t temp , i t e r , mi ;
i n t n u m i t e r = 3 0 ;
// Magnet ic f i e l d measurememt d i s a b l e d f o r speed
f l o a t M = 0 ;
f l o a t T ;
f l o a t Tplot [numtemps*m] ;
// C o n f i g u r e p l o t t i n g data a r r a y
i n t ** E p l o t ;
E p l o t = (i n t **) m a l l o c (numtemps*m* s i z eo f (i n t *)) ;
f o r (i = 0 ; i <(numtemps*m) ; i ++)

E p l o t [i] = (i n t *) m a l l o c ((n u m i t e r *L*L + 1) * s i z eo f (i n t)) ;
// Run Monte−C a r l o S i m u l a t i o n
// Loop o v e r examples
f o r (mi = 0 ; mi < m; mi++){

// Loop o v e r t e m p e r a t u r e s
f o r (temp = 0 ; temp < numtemps ; temp++){

// Set t e m p e r a t u r e p e r l o o p
T = c o e f s [temp]*T0 ;
// Re−randomise atomic a r r a y

31

Student id: 4276240 Daniel Long

f o r (i = 0 ; i < L ; i ++){
f o r (j = 0 ; j < L ; j ++){

Atoms [i] [j] = 2*(rand () %2)−1;
}

}
// Set number o f i t e r a t i o n s a c c o r d i n g to s i m u l a t i o n

t e m p e r a t u r e
n u m i t e r = c e i l (30 − 2*T) ;
// S t o r e v a l u e s f o r p l o t t i n g
Tplot [temp*m + mi] = T ;
E p l o t [temp*m + mi] [0] = c a l c u l a t e E 2 D (Atoms) ;
// I t e r a t e s i m u l a t i o n by s e l e c t i n g random h o r i z o n t a l

and v e r t i c a l co−o r d i n a t e and d e t e r m i n i n g s t a t e
through MC a l g o r i t h m

f o r (i t e r = 0 ; i t e r < n u m i t e r ; i t e r ++){
f o r (i = 0 ; i < L ; i ++){

i i = rand ()%L ;
f o r (j = 0 ; j < L ; j ++){

j j = rand ()%L ;
Atomst [i i] [j j] = Atoms [i i] [j j]*−1;
d e l t a E = c a l c u l a t e E 2 D c h a n g e (Atoms , i i ,

j j) ;
// I f e n e r g y o f new s t a t e i s l e s s than

p r e v i o u s s t a t e then m a i n t a i n f l i p
i f (d e l t a E <= 0) {

Atoms [i i] [j j] = −1*Atoms [i i] [j j] ;
}
// I f e n e r g y o f new s t a t e i s g r e a t e r

than p r e v i o u s s t a t e then f l i p
s p e c i f i c p r o b a b i l i t y

e l s e {
i f (exp (−(double) d e l t a E / ((double) kB*(

double)T)) > ((double) rand () /(
double)RAND MAX)) {

Atoms [i i] [j j] = −1*Atoms [i i] [j j
] ;

}
}
E p l o t [temp*m + mi] [i *L + j + i t e r *L*L +

1] = c a l c u l a t e E 2 D (Atoms) ;
}

}
}
// M a g n e t i s a t i o n can be r e c o r d e d but has been

removed f o r speed .
//M = calcu lateM2D (Atoms) ;
// Determine f i n a l e n e r g y o f system

32

Student id: 4276240 Daniel Long

E f i n a l = (f l o a t) c a l c u l a t e E 2 D (Atoms) /(f l o a t) (L*L) ;
// S t o r e f i n a l s p i n c o n f i g r a t i o n
f o r (j = 0 ; j < L ; j ++){

f o r (i = 0 ; i < L ; i ++){
Data [temp*m + mi] [j *L + i] = Atoms [i] [j] ;

}
}
// S t o r e f i n a l energy , t e m p e r a t u r e and m a g n e t i s a t i o n

o f f i n a l c o n f i g u r a t i o n
yData [temp*m + mi] [0] = E f i n a l ;
yData [temp*m + mi] [1] = T ;
yData [temp*m + mi] [2] = M;

}
}

// Save data i n t o . c s v f i l e s
FILE * f 1 = fop en (”CspinData2DM 30T . c s v ” , ”a”) ;
f o r (j = 0 ; j < numtemps*m; j ++){

f o r (i = 0 ; i < L*L ; i ++){
f p r i n t f (f1 , ”%i , ” , Data [j] [i]) ;

}
f p r i n t f (f1 , ”\n”) ;

}
f c l o s e (f 1) ;

FILE * f 2 = fop en (”CspinYData2DM 30T . c s v ” , ”a”) ;
f o r (j = 0 ; j < numtemps*m; j ++){

f o r (i = 0 ; i < 3 ; i ++){
f p r i n t f (f2 , ”%f , ” , yData [j] [i]) ;

}
f p r i n t f (f2 , ”\n”) ;

}
f c l o s e (f 2) ;

/*
FILE * f 3 = fop en (” E p l o t . c s v ” , ”w”) ;
f o r (i = 0 ; i < numtemps*m; i ++){

f o r (j = 0 ; j < (n u m i t e r *L*L) ; j ++){
f p r i n t f (f3 , ”%i , ” , E p l o t [i] [j]) ;

}
f p r i n t f (f3 , ”\ n ”) ;

}
f c l o s e (f 3) ;

FILE * f 4 = fop en (” Tplot . c s v ” , ”w”) ;
f o r (i = 0 ; i < numtemps*m; i ++){

f p r i n t f (f4 , ”%f , ” , Tp lot [i]) ;

33

Student id: 4276240 Daniel Long

}
f c l o s e (f 4) ;
*/
return 0 ;

}

8.3 Multi-Layer Perceptron code in python

−*− c o d i n g : u t f−8 −*−
”””
C r e a t e d on F r i Mar 22 1 0 : 5 4 : 1 9 2019

@author : Danie
”””
Import r e l e v a n t packages
from m a t p l o t l i b i m p o r t p y p l o t as p l t
i m p o r t numpy as np
i m p o r t pandas as pd
from t e n s o r f l o w i m p o r t k e r a s
from k e r a s . models i m p o r t S e q u e n t i a l
from k e r a s . l a y e r s i m p o r t Dense
from k e r a s i m p o r t o p t i m i z e r s
from k e r a s i m p o r t r e g u l a r i z e r s
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
from k e r a s i m p o r t backend as K

Load data from C g e n e r a t o r
Data = pd . r e a d c s v (’ l a r g e D a t a \CspinData2DM 30T . c s v ’ , sep= ’ , ’ ,

h e a d e r=None)
Conver t data i n t o a u s a b l e fo rmat
L = i n t (np . s q r t (np . s i z e (Data , 1) − 1))
#s p i n D a t a s t o r e s i n th e s p i n c o n f i g u r a t i o n s
s p i n D a t a = np . a r r a y (Data)
s p i n D a t a = s p i n D a t a [: , : (L*L)]
s p i n D a t a = np . a r r a y (sp inData , i n t)

Load data from C g e n e r a t o r
Data = pd . r e a d c s v (’ l a r g e D a t a \CspinYData2DM 30T . c s v ’ , sep= ’ , ’ ,

h e a d e r=None)
Conver t data i n t o a u s a b l e fo rmat
Data = np . a r r a y (Data , f l o a t)
Data = Data [: , : L]
S t o r e energy , te mp er atu re , n o r m a l i s e d t e m p e r a t u r e and

m a g n e t i s a t i o n data f o r each c o n f i g u r a t i o n
energyData = Data [: , 0]
tempData = Data [: , 1]
tempDatanorm = tempData /np . max (tempData)
magData = Data [: , 2]

34

Student id: 4276240 Daniel Long

S e p a r a t e data i n t o t r a i n i n g (80%) , t e s t s e t s (20%)
xTra in , xTest , yTra in , yTest = t r a i n t e s t s p l i t (sp inData ,

tempDatanorm , t e s t s i z e =0.2 , r a n d o m s t a t e =42)

S t o r e u s e f u l d e t a i l s o f th e d a t a s e t
m = number o f examples , n = number o f e l e m e n t s i n

c o n f i g u r a t i o n
n c l a s s = number o f t e m p e r a t u r e c l a s s e s s i m u l a t e d , m tot =

t o t a l number o f examples
m perT = examples p e r t e m p e r a t u r e c l a s s
m = np . s i z e (y T r a i n)
n = np . s i z e (xTra in , 1)
n c l a s s = np . s i z e (np . u n i q u e (y T r a i n))
m tot = np . s i z e (Data , 0)
m perT = i n t (m tot / n c l a s s)

Conver t output i n t o c a t e g o r i c a l a r r a y s , data i s c o n v e r t e d i n t o
c o r r e s p o n d i n g data i n d e x e s ,

i . e . 0 . 2 => 0 , 0 . 9 => 1 , 1 . 6 => 2 , 2 . 3 => 3 .
temps = np . u n i q u e (tempData)
tempsnorm = np . u n i q u e (tempDatanorm)
i d x = np . f l i p (np . a r an ge (0 , n c l a s s) , 0)
f o r i i n i d x :

y T r a i n [y T r a i n==tempsnorm [i]] = i
yTest [yTest==tempsnorm [i]] = i

y T r a i n = k e r a s . u t i l s . t o c a t e g o r i c a l (yTra in , n c l a s s)
yTest = k e r a s . u t i l s . t o c a t e g o r i c a l (yTest , n c l a s s)

C o n s t r u c t NN
Set Adam as o p t i m i s e r
Adam = o p t i m i z e r s . Adam
nn = S e q u e n t i a l ()
C r e a t e dense l a y e r w i t h 80 h i d d e n l a y e r n e u r o n s
nn . add (Dense (8 0 , a c t i v a t i o n= ’ r e l u ’ , i n p u t s h a p e =(n ,) ,

k e r n e l r e g u l a r i z e r=r e g u l a r i z e r s . l 2 (0 . 0 3)))
Ad f i n a l dense l a y e r w i t h output n e u r o n s
nn . add (Dense (n c l a s s , a c t i v a t i o n= ’ so f tmax ’))
#nn . add (Dropout (0 . 1))
Comi le network
nn . c o m p i l e (l o s s= ’ c a t e g o r i c a l c r o s s e n t r o p y ’ , o p t i m i z e r=Adam () ,

m e t r i c s =[’ a c c u r a c y ’ , ’ t o p k c a t e g o r i c a l a c c u r a c y ’])
Output summary o f network
nn . summary ()

Set batch s i z e and number o f t r a i n i n g epochs

35

Student id: 4276240 Daniel Long

b a t c h s i z e = 2000
epochs = 400

F i t t he network to t he data
h i s t o r y = nn . f i t (xTra in , yTra in , b a t c h s i z e=b a t c h s i z e , epochs=

epochs , v a l i d a t i o n d a t a =(xTest , yTest))
S t o r e l o s s and a c c u r a c y s c o r e s o f network
s c o r e = nn . e v a l u a t e (xTest , yTest , v e r b o s e =0)

P l o t t r a i n i n g & v a l i d a t i o n l o s s v a l u e s
h i s t = pd . DataFrame (h i s t o r y . h i s t o r y)
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
h i s t . p l o t (y=[’ l o s s ’ , ’ v a l l o s s ’])
p l t . t i t l e (’ Model l o s s ’)
p l t . y l a b e l (’ Loss ’)
p l t . x l a b e l (’ Epoch ’)
p l t . l e g e n d (l o c= ’ upper r i g h t ’)
p l t . show ()

P l o t t r a i n i n g & v a l i d a t i o n a c c u r a c y v a l u e s
h i s t = pd . DataFrame (h i s t o r y . h i s t o r y)
f i g = p l t . f i g u r e (f i g s i z e =(8 , 6))
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
ax = f i g . a d d s u b p l o t (1 , 1 , 1)
h i s t . p l o t (y=[’ acc ’ , ’ v a l a c c ’])
p l t . t i t l e (’ Model a c c u r a c y ’)
p l t . y l a b e l (’ Accuracy ’)
p l t . x l a b e l (’ Epoch ’)
p l t . l e g e n d (l o c= ’ l o w e r r i g h t ’)
p l t . show ()

P l o t t r a i n i n g & v a l i d a t i o n top−k a c c u r a c y v a l u e s
h i s t = pd . DataFrame (h i s t o r y . h i s t o r y)
f i g = p l t . f i g u r e (f i g s i z e =(8 , 6))
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
ax = f i g . a d d s u b p l o t (1 , 1 , 1)
h i s t . p l o t (y=[’ t o p k c a t e g o r i c a l a c c u r a c y ’ , ’

v a l t o p k c a t e g o r i c a l a c c u r a c y ’])
p l t . t i t l e (’ Model a c c u r a c y ’)
p l t . y l a b e l (’ Accuracy ’)
p l t . x l a b e l (’ Epoch ’)
p l t . l e g e n d (l o c= ’ l o w e r r i g h t ’)
p l t . show ()

Output the t e s t s e t a c c u r a c y o f network
p r i n t (’ Test Accuracy : ’ , np . round (s c o r e [1] , 4) *100 , ’%’)

36

Student id: 4276240 Daniel Long

D i s p l a y f i r s t l a y e r w e i g h t s
w e i g h t s = nn . l a y e r s [0] . g e t w e i g h t s ()
w e i g h t s = w e i g h t s [0]
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . imshow (w e ights , a s p e c t= ’ auto ’ , cmap= ’ g r a y ’)
p l t . y l a b e l (’ I n p u t C o n f i g u r a t i o n Element ’)
p l t . x l a b e l (’ Hidden L a y e r Neuron ’)
p l t . c o l o r b a r ()
p l t . show ()

D i s p l a y second l a y e r w e i g h t s
w e i g h t s = nn . l a y e r s [1] . g e t w e i g h t s ()
w e i g h t s = w e i g h t s [0]
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . imshow (w e ights , a s p e c t= ’ auto ’ , cmap= ’ g r a y ’)
p l t . c o l o r b a r ()
p l t . y l a b e l (’ Hidden L a y e r Neuron ’)
p l t . x l a b e l (’ Output Neuron ’)
p l t . show ()

D i s p l a y a v e r a g e o f w e i g h t s i n second l a y e r
w e i g h t s = nn . l a y e r s [1] . g e t w e i g h t s ()
w e i g h t s = w e i g h t s [0]
Wsum = np . mean (we ights , 0)
Wstd = np . s t d (we igh ts , 0)
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . x l a b e l (’ Temperature , (n o r m a l i s e d u n i t s) ’)
p l t . y l a b e l (’ Mean v a l u e o f w e i g h t s ’)
p l t . e r r o r b a r (temps , Wsum, Wstd , fmt= ’ . k ’ , c a p s i z e =5)
p l t . show ()

Find f i r s t l a y e r w e i g h t s w i t h h i g h v a r i a n c e , i e w e i g h t s which
a r e d i s c e r n i n g p a t t e r n s i n c o n f i g u r a t i o n

w e i g h t s = nn . l a y e r s [0] . g e t w e i g h t s ()
w e i g h t s = w e i g h t s [0]
f i l t W = np . s t d (w e ights , 0)
D e f i n e p a t t e r n once as h a v i n g a h i g h s t a n d a r d d e v i a t i o n
i d x s = (f i l t W>np . mean (f i l t W))
w e i g h t s = nn . l a y e r s [1] . g e t w e i g h t s ()
w e i g h t s = w e i g h t s [0]
w e i g h t s = w e i g h t s [i d x s , :]
we ights mean = np . mean (w e ights , 0)
w e i g h t s e r r = np . s t d (we ights , 0)
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . x l a b e l (’ Temperature , (n o r m a l i s e d u n i t s) ’)
p l t . y l a b e l (’ Mean v a l u e o f w e i g h t s ’)
p l t . e r r o r b a r (temps , weights mean , w e i g h t s e r r , fmt= ’ . k ’ , c a p s i z e

37

Student id: 4276240 Daniel Long

=5)
p l t . show ()

Find output o f n e t o r k f o r t e s t s e t c o n f i g u r a t i o n s
n n o u t p u t = K. f u n c t i o n ([nn . l a y e r s [0] . i n p u t] , [nn . l a y e r s [1] .

output])
zz = n n o u t p u t ([xTest]) [0]
Conver t yData i n t o output neuron number
y T e s t f o r m = np . sum (yTest *np . a r ang e (0 , n c l a s s) , a x i s =1)
D e f i n e o r d e r e d phase as below Tc
ordPhase = (temps<=(2/np . l o g (1+np . s q r t (2)))) *np . ones ((n c l a s s ,))
D e f i n e d i s o r d e r e d phase as above Tc
d i s P h a s e = (temps>(2/np . l o g (1+np . s q r t (2)))) *np . ones ((n c l a s s ,))
Find o u t p u t t e d p r o b a b i l i t y o f c o n f i g u r a t i o n b e i n g i n o r d e r e d

or d i s o r d e r e d p h a s e s
ordProb = zz * ordPhase
d i s P r o b = zz * d i s P h a s e
ordProb = np . sum (ordProb , 1)
d i s P r o b = np . sum (d i sProb , 1)
Determine a b s o l u t e p r o b a b i l i t y o f >50% => 1 and <50% => 0
ordProbAbs = (ordProb >=0.5)*1
d i sProbAbs = (d i sProb <0.5) *1
Determine n e u r o n s c o r r e s p o n d i n g to output t e m p e r a t u r e s which

a r e above and below Tc
cTempIdx = np . argmin (abs (temps−(2/np . l o g (1+np . s q r t (2)))))
yordProb = (yTest form<cTempIdx) *1
Determine a c c u r a c y o f phase c l a s s i f i c a t i o n
phaseAcc = (1−(np . sum (abs (yordProb−ordProbAbs)) /np . s i z e (yTest , 0)

)) *100
Determine e r ro r i n p r e d u c t i o n
P r e d e r r = abs (yordProb−ordProbAbs) *(y T e s t f o r m +1)
P r e d e r r = P r e d e r r [P r e d e r r !=0]
P r e d e r r = P r e d e r r−1
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
f i g = p l t . f i g u r e (f i g s i z e =(8 , 6))
ax = f i g . a d d s u b p l o t (1 , 1 , 1)
ax . s e t x l a b e l (’ Temperature ’)
ax . s e t y l a b e l (’ Frequency o f i n c o r r e c t phase c l a s s i f i c a t i o n ’)
pLot h i s t o r g r a m o f e r ro r o c c u r e n c e s wrt t e m p e r a t u r e
p l t . h i s t (P r e d e r r , b i n s=np . s i z e (np . u n i q u e (P r e d e r r)))
x t i c k s = np . u n i q u e (P r e d e r r) [np . u n i q u e (P r e d e r r)%5==0]
ax . s e t x t i c k s (x t i c k s)
ax . s e t x t i c k l a b e l s (np . round (temps [x t i c k s . a s t y p e (i n t)] , 2))
p r i n t (’ Phase c l a s s i f i c a t i o n a c c u r a c y : ’ , phaseAcc)
p l t . show ()

Find a c c u r a c y o f t e m p e r a t u r e p r e d i c t i o n to +− 2 c l a s s e s

38

Student id: 4276240 Daniel Long

yPred = np . argmax (zz , 1)
p r e d D i f f = abs (yPred−y T e s t f o r m)
Pred 2 = np . sum (p r e d D i f f <3)/np . s i z e (p r e d D i f f , 0)
p r i n t (’Temp c l a s s +−2 a c c u r a c y : ’ , Pred 2 *100 , ’%’)

P r i n t b i a s e s o f second l a y e r
w e i g h t s = nn . l a y e r s [1] . g e t w e i g h t s () # Get CNN p a r a m a t e r s
w e i g h t s = w e i g h t s [1]
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . p l o t (temps , we ights , ’ . k ’)
p l t . y l a b e l (’ B i a s v a l u e ’)
p l t . x l a b e l (’ Temperature c l a s s ’)
p l t . show ()

8.4 Convolutional Neural Network code in python

−*− c o d i n g : u t f−8 −*−
”””
C r e a t e d on Sat Mar 16 1 2 : 5 7 : 5 9 2019

@author : Danie
”””
Import r e l e v a n t packages
from m a t p l o t l i b i m p o r t p y p l o t as p l t
i m p o r t numpy as np
i m p o r t pandas as pd
from t e n s o r f l o w i m p o r t k e r a s
from k e r a s . models i m p o r t S e q u e n t i a l
from k e r a s . l a y e r s i m p o r t Dense , Conv2D , F l a t t e n
from k e r a s i m p o r t o p t i m i z e r s
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
from k e r a s i m p o r t backend as K
i m p o r t NoisyNumDiff

Load data from C g e n e r a t o r
Data = pd . r e a d c s v (’ l a r g e D a t a \CspinData2DM 30T . c s v ’ , sep= ’ , ’ ,

h e a d e r=None)
Conver t data i n t o a u s a b l e fo rmat
L = i n t (np . s q r t (np . s i z e (Data , 1) − 1))
#s p i n D a t a s t o r e s i n th e s p i n c o n f i g u r a t i o n s
s p i n D a t a = np . a r r a y (Data)
s p i n D a t a = s p i n D a t a [: , : (L*L)]
s p i n D a t a = np . a r r a y (sp inData , i n t)

Load data from C g e n e r a t o r
Data = pd . r e a d c s v (’ l a r g e D a t a \CspinYData2DM 30T . c s v ’ , sep= ’ , ’ ,

h e a d e r=None)
Conver t data i n t o a u s a b l e fo rmat

39

Student id: 4276240 Daniel Long

Data = np . a r r a y (Data , f l o a t)
Data = Data [: , : L]
S t o r e energy , te mp er atu re , n o r m a l i s e d t e m p e r a t u r e and

m a g n e t i s a t i o n data f o r each c o n f i g u r a t i o n
energyData = Data [: , 0]
tempData = Data [: , 1]
tempDatanorm = tempData /np . max (tempData)
magData = Data [: , 2]

S e p a r a t e data i n t o t r a i n i n g (80%) , t e s t s e t s (20%)
xTra in , xTest , yTra in , yTest = t r a i n t e s t s p l i t (sp inData ,

tempDatanorm , t e s t s i z e =0.2 , r a n d o m s t a t e =42)

S t o r e u s e f u l d e t a i l s o f th e d a t a s e t
m = number o f examples , n = number o f e l e m e n t s i n

c o n f i g u r a t i o n
n c l a s s = number o f t e m p e r a t u r e c l a s s e s s i m u l a t e d , m tot =

t o t a l number o f examples
m perT = examples p e r t e m p e r a t u r e c l a s s
m = np . s i z e (y T r a i n)
n = np . s i z e (xTra in , 1)
n c l a s s = np . s i z e (np . u n i q u e (y T r a i n))
m tot = np . s i z e (Data , 0)
m perT = i n t (m tot / n c l a s s)

Conver t output i n t o c a t e g o r i c a l a r r a y s , data i s c o n v e r t e d i n t o
c o r r e s p o n d i n g data i n d e x e s ,

i . e . 0 . 2 => 0 , 0 . 9 => 1 , 1 . 6 => 2 , 2 . 3 => 3 .
temps = np . u n i q u e (tempData)
tempsnorm = np . u n i q u e (tempDatanorm)
i d x = np . f l i p (np . a r an ge (0 , n c l a s s) , 0)
f o r i i n i d x :

y T r a i n [y T r a i n==tempsnorm [i]] = i
yTest [yTest==tempsnorm [i]] = i

y T r a i n = k e r a s . u t i l s . t o c a t e g o r i c a l (yTra in , n c l a s s)
yTest = k e r a s . u t i l s . t o c a t e g o r i c a l (yTest , n c l a s s)

Reshape i n p u t f o r network
x T r a i n = x T r a i n . r e s h a p e (−1 , i n t (np . s q r t (n)) , i n t (np . s q r t (n)) , 1)
xTest = xTest . r e s h a p e (−1 , i n t (np . s q r t (n)) , i n t (np . s q r t (n)) , 1)

C o n s t r u c t CNN
s e t number o f f i l t e r s to one
n f i l t s = 1
Set f i l t e r s i z e to 2 x2
k s i z e = 2

40

Student id: 4276240 Daniel Long

Set Adam as o p t i m i s e r
Adam = o p t i m i z e r s . Adam
cnn = S e q u e n t i a l ()
C o n f i g u r e c o n v o l u t i o n l a y e r
cnn . add (Conv2D (f i l t e r s =n f i l t s , k e r n e l s i z e=k s i z e , i n p u t s h a p e =(

i n t (np . s q r t (n)) , i n t (np . s q r t (n)) , 1) , a c t i v a t i o n= ’ r e l u ’))
F l a t t e n c o n v o l u t i o n
cnn . add (F l a t t e n ())
C r e a t e f i n a l dense l a y e r to output n e u r o n s
cnn . add (Dense (n c l a s s , a c t i v a t i o n= ’ so f tmax ’))
Compi le network
cnn . c o m p i l e (l o s s= ’ c a t e g o r i c a l c r o s s e n t r o p y ’ , o p t i m i z e r=Adam () ,

m e t r i c s =[’ c a t e g o r i c a l a c c u r a c y ’])
cnn . summary ()

T r a i n CNN
Set batch s i z e and number o f t r a i n i n g epochs
b a t c h s i z e = 2000
epochs = 3000

F i t t he network to t he data
h i s t o r y = cnn . f i t (xTra in , yTra in , b a t c h s i z e=b a t c h s i z e , epochs=

epochs , v a l i d a t i o n d a t a =(xTest , yTest))
S t o r e l o s s and a c c u r a c y s c o r e s o f network
s c o r e = cnn . e v a l u a t e (xTest , yTest , v e r b o s e =0)

P l o t t r a i n i n g & v a l i d a t i o n l o s s v a l u e s
h i s t = pd . DataFrame (h i s t o r y . h i s t o r y)
h i s t . p l o t (y=[’ l o s s ’ , ’ v a l l o s s ’])
p l t . t i t l e (’ Model l o s s ’)
p l t . y l a b e l (’ Loss ’)
p l t . x l a b e l (’ Epoch ’)
p l t . l e g e n d (l o c= ’ upper r i g h t ’)
p l t . show ()

P l o t t r a i n i n g & v a l i d a t i o n a c c u r a c y v a l u e s
h i s t = pd . DataFrame (h i s t o r y . h i s t o r y)
h i s t . p l o t (y=[’ c a t e g o r i c a l a c c u r a c y ’ , ’ v a l c a t e g o r i c a l a c c u r a c y ’])
p l t . t i t l e (’ C a t e g o r i c a l a c c u r a c y ’)
p l t . y l a b e l (’ a c c u r a c y ’)
p l t . x l a b e l (’ Epoch ’)
p l t . l e g e n d (l o c= ’ l o w e r r i g h t ’)
p l t . show ()

#P r i n t t e s t a c c u r a c y
p r i n t (’ C a t e g o r i c a l Accuracy : ’ , np . round (s c o r e [1]*1 0 0 , 2) , ’%’)

41

Student id: 4276240 Daniel Long

P r i n t c o n v o l u t i o n f i l t e r / s
w e i g h t s = cnn . l a y e r s [0] . g e t w e i g h t s ()
w e i g h t s = w e i g h t s [0]
f o r i i n np . a ran ge (0 , n f i l t s) :

f i l t w e i g h t s = np . a r r a y (w e i g h t s [: , : , : , i]) . r e s h a p e (k s i z e , k s i z e
)

p r i n t (’ F i l t e r ’ , i +1, ’ c o n v o l u t i o n Parameter s :\ n ’ , f i l t w e i g h t s
)

C a l c u l a t e c o n f u s i o n m a t r i x
#yTestPred = cnn . p r e d i c t (xTest , b a t c h s i z e=None , v e r b o s e =0,

s t e p s=None)
#yTestPred = (yTestPred == yTestPred . max (a x i s =1) [: , None]) . a s t y p e

(i n t)
#yTestPred = np . matmul (yTestPred , np . a ra ng e (1 , n c l a s s +1))
#y T e s t c o n f = np . matmul (yTest , np . a r ang e (1 , n c l a s s +1))
#conmat = c o n f u s i o n m a t r i x (yTestconf , yTestPred , l a b e l s=None ,

s a m p l e w e i g h t=None)
#df cm = pd . DataFrame (conmat , ra nge (n c l a s s) , r an ge (n c l a s s))
#sn . s e t (f o n t s c a l e =1.4) # Set l a b e l s i z e
#sn . heatmap (df cm , annot=True , cmap=”YlGnBu” , annot kws={” s i z e ” :

8}) # With s e t f o n t s i z e

Get conv output
c o n v o u t p u t = K. f u n c t i o n ([cnn . l a y e r s [0] . i n p u t] ,

[cnn . l a y e r s [1] . output])
Determine output o f c o n v o l u t i o n a l l a y e r on t e s t s e t data
x = c o n v o u t p u t ([xTest]) [0]
x = np . mean (x , a x i s =1)
Conver t yData i n t o output neuron number
y T e s t f o r m = np . sum (yTest * temps , a x i s =1)

P l o t t he c o n v o l v e d i n p u t a g a i n s t t e m p e r a t u r e o f c o n f i g u r t i o n
y = np . z e r o s (n c l a s s)
y s t d = np . z e r o s (n c l a s s)
f o r i i n np . a ran ge (0 , n c l a s s) :

e x t r a c t = (y T e s t f o r m==temps [i]) *1
y [i] = np . sum (x* e x t r a c t) /np . sum (e x t r a c t)
y s t d [i] = np . s t d (x [(x* e x t r a c t) ! = 0])

p l t . e r r o r b a r (temps , y , ystd , fmt= ’ . k ’ , c a p s i z e =3)
p l t . x l a b e l (’ Temperature (n o r m a l i s e d u n i t s) ’)
p l t . y l a b e l (’ Mean C o n v o l u t i o n Output ’)
p l t . show ()

Find d e r i v a t i v e o f c o n v o l v e d c o n f i g u r a t i o n s wrt t e m p e r a t u r e
n = 1000

42

Student id: 4276240 Daniel Long

Tc = np . z e r o s (n)
f o r j i n r an ge (n) :

n o i s e = np . z e r o s (np . s i z e (y))
f o r i i n r an ge (np . s i z e (y s t d)) :

n o i s e [i] = np . random . normal (0 , y s t d [i]**2 , 1)
dy = NoisyNumDiff . TVRegDiff (y+n o i s e , i t e r n =5, a l p h=1e−7) ;
dy = dy [0 : 1 0 0]
Tc [j] = temps [np . argmax (dy)]

Tc mean = np . mean (Tc)
T c s t d = np . s t d (Tc)
p r i n t (”Tc i s found to be : ” , Tc mean)
p r i n t (”The u n c e r t a i n t y i n Tc was : ” , T c s t d)

E x t r a c t w e i g h t s o f f i n a l l a y e r
w e i g h t s = cnn . l a y e r s [2] . g e t w e i g h t s () # Get CNN p a r a m a t e r s
w e i g h t s = w e i g h t s [0]
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . imshow (w e ights , a s p e c t= ’ auto ’ , cmap= ’ g r a y ’)
p l t . y l a b e l (’ Hidden L a y e r Neuron ’)
p l t . x l a b e l (’ Output Neuron ’)
p l t . c o l o r b a r ()
p l t . show ()

P l o t mean w e i g h t o f h i d d e n l a y e r a g a i n s t t e m p e r a r u r e o f
c o r r e s p o n d i n g output neuron

Wmean = np . mean (we igh ts , 0)
Wstd = np . s t d (we igh ts , 0)
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . y l a b e l (’ Mean Weight ’)
p l t . x l a b e l (’ Temperature ’)
p l t . e r r o r b a r (temps , Wmean, Wstd , fmt= ’ . k ’ , c a p s i z e =3)
p l t . show ()

Find output o f n e t o r k f o r t e s t s e t c o n f i g u r a t i o n s
c n n o u t p u t = K. f u n c t i o n ([cnn . l a y e r s [0] . i n p u t] , [cnn . l a y e r s [2] .

output])
zz = c n n o u t p u t ([xTest]) [0]
y T e s t f o r m = np . sum (yTest *np . a r ang e (0 , n c l a s s) , a x i s =1)
D e f i n e o r d e r e d phase as below Tc
ordPhase = (temps<=(2/np . l o g (1+np . s q r t (2)))) *np . ones ((n c l a s s ,))
D e f i n e d i s o r d e r e d phase as above Tc
d i s P h a s e = (temps>(2/np . l o g (1+np . s q r t (2)))) *np . ones ((n c l a s s ,))
Find o u t p u t t e d p r o b a b i l i t y o f c o n f i g u r a t i o n b e i n g i n o r d e r e d

or d i s o r d e r e d p h a s e s
ordProb = zz * ordPhase
d i s P r o b = zz * d i s P h a s e

43

Student id: 4276240 Daniel Long

ordProb = np . sum (ordProb , 1)
d i s P r o b = np . sum (d i sProb , 1)
Determine a b s o l u t e p r o b a b i l i t y o f >50% => 1 and <50% => 0
ordProbAbs = (ordProb >=0.5)*1
d i sProbAbs = (d i sProb <0.5) *1
Determine n e u r o n s c o r r e s p o n d i n g to output t e m p e r a t u r e s which

a r e above and below Tc
cTempIdx = np . argmin (abs (temps−(2/np . l o g (1+np . s q r t (2)))))
yordProb = (yTest form<cTempIdx) *1
Determine a c c u r a c y o f phase c l a s s i f i c a t i o n
phaseAcc = (1−(np . sum (abs (yordProb−ordProbAbs)) /np . s i z e (yTest , 0)

)) *100
p r i n t (” Phase c l a s s i f i c a t i o n a c c u r a c y : ” , phaseAcc)

Find a c c u r a c y o f t e m p e r a t u r e p r e d i c t i o n to +− 2 c l a s s e s
yPred = np . argmax (zz , 1)
p r e d D i f f = abs (yPred−y T e s t f o r m)
Pred 2 = np . sum (p r e d D i f f <3)/np . s i z e (p r e d D i f f , 0)
p r i n t (’Temp c l a s s +−2 a c c u r a c y : ’ , Pred 2 *100 , ’%’)

P l o t b i a s terms o f f i n a l l a y e r
w e i g h t s = cnn . l a y e r s [2] . g e t w e i g h t s () # Get CNN p a r a m a t e r s
w e i g h t s = w e i g h t s [1]
p l t . r c (’ f o n t ’ , f a m i l y= ’ s e r i f ’ , s i z e =15)
p l t . p l o t (temps , we ights , ’ . k ’)
p l t . y l a b e l (’ B i a s v a l u e ’)
p l t . x l a b e l (’ Temperature c l a s s ’)
p l t . show ()

44

	Introduction
	Background Theory
	The Ising Model
	The Two-Dimensional Ising Model
	Monte-Carlo Simulation of Ising Model
	Multi-Layer Perceptrons (MLP)
	Convolutional Neural Networks

	Method
	Development of 1D Simulation
	Development of 2D Simulation
	Preparation of Multi-Layer Perceptron
	Preparation of Convolutional Neural Network

	Results
	Analysis of Multi-Layer Perceptron
	Analysis of Convolutional Neural Network

	Discussion
	Summary
	References
	Appendix
	1D Monte-Carlo Simulation in C
	2D Monte-Carlo Simulation in C
	Multi-Layer Perceptron code in python
	Convolutional Neural Network code in python

